Sex differences in the inflammatory response of the mouse DRG and its connection to pain in Multiple Sclerosis

Research Square (Research Square)(2022)

引用 0|浏览1
暂无评分
摘要
Abstract Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as primary mouse DRG neurons cultured in vitro, we sought to characterize the sex differences specifically in peripheral sensory neurons which may underlie the disparities in MS pain. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα signaling pathways activated intracellularly in cultured nociceptors. Given that TNFα signaling has been shown to impact on mitochondrial function, this led us to investigate sex differences in the mitochondria’s response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.
更多
查看译文
关键词
multiple sclerosis,inflammatory response,mouse drg,sex differences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要