FedPower: Privacy-Preserving Distributed Eigenspace Estimation

arXiv (Cornell University)(2021)

引用 0|浏览0
暂无评分
摘要
Eigenspace estimation is fundamental in machine learning and statistics, which has found applications in PCA, dimension reduction, and clustering, among others. The modern machine learning community usually assumes that data come from and belong to different organizations. The low communication power and the possible privacy breaches of data make the computation of eigenspace challenging. To address these challenges, we propose a class of algorithms called \textsf{FedPower} within the federated learning (FL) framework. \textsf{FedPower} leverages the well-known power method by alternating multiple local power iterations and a global aggregation step, thus improving communication efficiency. In the aggregation, we propose to weight each local eigenvector matrix with {\it Orthogonal Procrustes Transformation} (OPT) for better alignment. To ensure strong privacy protection, we add Gaussian noise in each iteration by adopting the notion of \emph{differential privacy} (DP). We provide convergence bounds for \textsf{FedPower} that are composed of different interpretable terms corresponding to the effects of Gaussian noise, parallelization, and random sampling of local machines. Additionally, we conduct experiments to demonstrate the effectiveness of our proposed algorithms.
更多
查看译文
关键词
eigenspace estimation,privacy-preserving
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要