Identifying the potential role of IL-1β in molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis

Research Square (Research Square)(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Background: Inflammatory processes exacerbated by IL-1β are believed to be key mediators of disc degeneration and low back pain. However, the underlying mechanism remains unclear. We performed a bioinformatics analysis to identify the key genes that were differentially expressed between degenerative intervertebral disc cells with and without exposure to interleukin (IL)-1β, and explore the related signaling pathways and interaction networks.Methods: The microarray data were downloaded from the Gene Expression Omnibus (GSE 27494). Then, analyses of the gene ontology, signaling pathways, and interaction networks for the differentially expressed genes (DEGs) were conducted using tools including the Database for Annotation, Visualization, and Integrated Discovery (DAVID), Metascape, Gene Set Enrichment Analysis (GSEA),Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, the Venn method, and packages of the R computing language.Results: A total of 260 DEGs were identified, including 161 upregulated genes and 99 down-regulated genes. Gene Ontology (GO) annotation analysis showed that these DEGs were mainly associated with the extracellular region, chemotaxis, taxis, cytokine activity, and cytokine receptor binding. A Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis showed that these DEGs were mainly involved in the interactions of cytokine-cytokine receptor interaction, rheumatoid arthritis, tumor necrosis factor (TNF) signaling pathway, salmonella infection, and chemokine signaling pathway. The interaction network analysis indicated that 10 hub genes, including CXCL8, CXCL1, CCL20, CXCL2, CXCL5, CXCL3, CXCL6, C3, PF4, and GPER1 may play key roles in intervertebral disc degeneration.Conclusions: Bioinformatic analysis showed that CXCL8 and other 9 key genes may play a role in the development of disc degeneration induced by inflammatory reactions, and can be used to identify the potential therapeutic target genes.
更多
查看译文
关键词
disc degeneration,degeneration expression profiling,bioinformatics analysis,molecular mechanisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要