Evasion Attacks to Graph Neural Networks via Influence Function.

arXiv (Cornell University)(2020)

引用 0|浏览0
暂无评分
摘要
Graph neural networks (GNNs) have achieved state-of-the-art performance in many graph-related tasks, e.g., node classification. However, recent works show that GNNs are vulnerable to evasion attacks, i.e., an attacker can slightly perturb the graph structure to fool GNN models. Existing evasion attacks to GNNs have several key drawbacks: 1) they are limited to attack two-layer GNNs; 2) they are not efficient; or/and 3) they need to know GNN model parameters. We address the above drawbacks in this paper and propose an influence-based evasion attack against GNNs. Specifically, we first introduce two influence functions, i.e., feature-label influence and label influence, that are defined on GNNs and label propagation (LP), respectively. Then, we build a strong connection between GNNs and LP in terms of influence. Next, we reformulate the evasion attack against GNNs to be related to calculating label influence on LP, which is applicable to multi-layer GNNs and does not need to know the GNN model. We also propose an efficient algorithm to calculate label influence. Finally, we evaluate our influence-based attack on three benchmark graph datasets. Our experimental results show that, compared to state-of-the-art attack, our attack can achieve comparable attack performance, but has a 5-50x speedup when attacking two-layer GNNs. Moreover, our attack is effective to attack multi-layer GNNs.
更多
查看译文
关键词
graph neural networks,influence function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要