Bottom Electrode Effects on Piezoelectricity of Pb(Zr0.52,Ti0.48)O3 Thin Film in Flexible Sensor Applications

Yanling Yuan, Ling Gao, Naixin Li, Jiuning Gao,Yu Yan,Yiming Zhao, Zongqiang Ren,Hongxin Gong,Yunfei Zhang,Yongbin Liu,Ming Wu,Lisheng Zhong

MATERIALS(2023)

引用 0|浏览2
暂无评分
摘要
Piezoelectric thin films grown on a mechanical, flexible mica substrate have gained significant attention for their ability to convert mechanical deformation into electrical energy though a curved surface. To extract the generated charge from the PZT thin films, bottom electrodes are typically grown on mica substrates. However, this bottom electrode also serves as a buffering layer for the growth of PZT films, and its impact on the piezoelectric properties of PZT thin films remains understudied. In this work, the effect of Pt and LaNiO3 bottom electrodes on the piezoelectric effect of a Pb(Zr-0.52,Ti-0.48)O-3 thin film was investigated. It was observed that the PZT thin films on LNO/Mica substrate possessed weaker stress, stronger (100) preferred orientation, and higher remanent polarization, which is beneficial for a higher piezoelectric response theoretically. However, due to insufficient grain growth resulting in more inactive grain boundaries and lattice imperfections, the piezoelectric coefficient of the PZT thin film on LNO/Mica was smaller than that of the PZT thin film on a Pt/Mica substrate. Therefore, it is concluded that, under the current experimental conditions, PZT films grown with Pt as the bottom electrode are better suited for applications in flexible piezoelectric sensor devices. However, when using LNO as the bottom electrode, it is possible to optimize the grain size of PZT films by adjusting the sample preparation process to achieve piezoelectric performance exceeding that of the PZT/Pt/Mica samples.
更多
查看译文
关键词
PZT,piezoelectric effect,flexible sensor,ferroelectric thin film
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要