Elucidating potential bioindicators from insights in the diversity and assembly processes of prokaryotic and eukaryotic communities in the Mekong River

ENVIRONMENTAL RESEARCH(2024)

引用 0|浏览1
暂无评分
摘要
Drivers for spatio-temporal distribution patterns of overall planktonic prokaryotes and eukaryotes in riverine ecosystems are generally not fully understood. This study employed amplicon metabarcoding to investigate the distributions and assembly mechanisms of bacterial and eukaryotic communities in the Mekong River. The prevailing bacteria taxa were found to be Betaproteobacteria, Actinobacteria, and Bacteroidetes, while the dominant eukaryotic organisms were cryptophytes, chlorophytes, and diatoms. The community assemblages were influenced by a combination of stochastic and deterministic processes. Drift (DR) and dispersal limitation (DL), signifying the stochastic mechanism, were the main processes shaping the overall prokaryotic and eukaryotic communities. However, homogeneous selection (HoS), indicating deterministic mechanism, played a major role in the assembly process of core prokaryotic communities, especially in the wet season. In contrast, the core eukaryotic communities including Opisthokonta, Sar, and Chlorophyta were dominated by stochastic processes. The significance of HoS within prokaryotic communities was also found to exhibit a decreasing trend from the upstream sampling sites (Chiang Saen and Chiang Khan, Nong Khai) towards the downstream sites (Mukdahan, and Khong Chiam) of the Mekong River. The environmental gradients resulting from the site-specific variations and the gradual decrease in elevation along the river may have a potential influence on the role of HoS in community assembly. Crucial environmental factors that shape the phylogenetic structure within distinct bins of the core prokaryotic communities including water depth, temperature, chloride, sodium, and sulphate were identified, as inferred by their correlation with the beta Net Relatedness Index (betaNRI) during the wet season. Overall, these findings enhance understanding of the complex mechanisms governing the spatio-temporal dynamics of prokaryotic and eukaryotic communities in the Mekong River. Finally, insights gained from this study could provide information on further use of specific core bacteria as microbial-based bioindicators that are effective for the assessment and conservation of the Mekong River ecosystem.
更多
查看译文
关键词
eDNA,Bacteria,Eukaryotes,Diversity,Community ecology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要