A Theory of Irrotational Contact Fields

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
We present a framework that enables to write a family of convex approximations of complex contact models. Within this framework, we show that we can incorporate well established and experimentally validated contact models such as the Hunt & Crossley model. Moreover, we show how to incorporate Coulomb's law and the principle of maximum dissipation using a regularized model of friction. Contrary to common wisdom that favors the use of rigid contact models, our convex formulation is robust and performant even at high stiffness values far beyond that of materials such as steel. Therefore, the same formulation enables the modeling of compliant surfaces such as rubber gripper pads or robot feet as well as hard objects. We characterize and evaluate our approximations in a number of tests cases. We report their properties and highlight limitations. Finally, we demonstrate robust simulation of robotic tasks at interactive rates, with accurately resolved stiction and contact transitions, as required for meaningful sim-to-real transfer. Our method is implemented in the open source robotics toolkit Drake.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要