Engineering Responsible And Explainable Models In Human-Agent Collectives


Cited 0|Views4
No score
In human-agent collectives, humans and agents need to work collaboratively and agree on collective decisions. However, ensuring that agents responsibly make decisions is a complex task, especially when encountering dilemmas where the choices available to agents are not unambiguously preferred over another. Therefore, methodologies that allow the certification of such systems are urgently needed. In this paper, we propose a novel engineering methodology based on formal model checking as a step toward providing evidence for the certification of responsible and explainable decision making within human-agent collectives. Our approach, which is based on the MCMAS model checker, verifies the decision-making behavior against the logical formulae specified to guarantee safety and controllability, and address ethical concerns. We propose the use of counterexample traces and simulation results to provide a judgment and an explanation to the AI engineer as to the reasons actions may be refused or allowed. To demonstrate the practical feasibility of our approach, we evaluate it using the real-world problem of human-UAV (unmanned aerial vehicle) teaming in dynamic and uncertain environments.
Translated text
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined