The Effects of Propofol on Hypoxia- and TNF-α-Mediated Brain-Derived Neurotrophic Factor/Tyrosine Kinase Receptor B Pathway Dysregulation in Primary Rat Hippocampal Neurons and Astrocytes

Research Square (Research Square)(2021)

引用 0|浏览3
暂无评分
摘要
Abstract Background: BDNF/TrkB pathway dysregulation may be induced by hypoxia and inflammation, and play pivotal roles during the development of neurological disorders. Propofol is an anesthetic agent with neuro-protective properties. We aimed to verify whether propofol affected BDNF/TrkB pathway in neurons exposed to hypoxia or TNF-α. Methods: Primary rat hippocampal neurons and astrocytes were cultured and exposed to propofol followed by hypoxia or TNF-α treatment. The production of BDNF and the expression/truncation/phosphorylation of TrkB were measured. The underlying mechanisms such as ERK, CREB, p35 and Cdk5 were investigated. Results: In hippocampal neurons and astrocytes, hypoxia and TNF-α reduced the production of BDNF. Pretreatment of hippocampal neurons with 25μM propofol reversed the inhibitory effect of hypoxia or TNF-α on BDNF production. However, even 100μM propofol had no such effect in astrocytes. Further, we found that in hippocampal neurons hypoxia and TNF-α increased the phosphorylaion of ERK (p-ERK) and CREB at Ser142 (p-CREB Ser142 ), while reduced the phosphorylation of CREB at Ser133 (p-CREB Ser133 ), which were all reversed by 25μM propofol and 10μM ERK inhibitor. In addition, neither hypoxia nor TNF-α affected TrkB expression, truncation or phosphorylation in hippocampal neurons and astrocytes. However 50μM propofol induced TrkB phosphorylation without affecting its expression and truncation only in hippocampal neurons. Furthermore, we detected that in hippocampal neurons, 50μM propofol induced p35 expression and Cdk5 activation, and blockade of p35 or Cdk5 mitigated propofol-induced TrkB phosphorylation. Conclusions: Propofol, via ERK/CREB and p35/Cdk5, may modulate BDNF/TrkB pathway in hippocampal neurons that were exposed to hypoxia or TNF-α.
更多
查看译文
关键词
neurotrophic factor/tyrosine,propofol on,primary rat hippocampal neurons,brain-derived
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要