Optimizing boiler combustion parameters based on evolution teaching- learning-based optimization algorithm for reducing NOR emission concentration

MATHEMATICAL BIOSCIENCES AND ENGINEERING(2023)

引用 0|浏览0
暂无评分
摘要
How to reduce a boiler's NOx emission concentration is an urgent problem for thermal power plants. Therefore, in this paper, we combine an evolution teaching-learning-based optimization algorithm with extreme learning machine to optimize a boiler's combustion parameters for reducing NOx emission concentration. Evolution teaching-learning-based optimization algorithm (ETLBO) is a variant of conventional teaching-learning-based optimization algorithm, which uses a chaotic mapping function to initialize individuals' positions and employs the idea of genetic evolution into the learner phase. To verify the effectiveness of ETLBO, 20 IEEE congress on Evolutionary Computation benchmark test functions are applied to test its convergence speed and convergence accuracy. Experimental results reveal that ETLBO shows the best convergence accuracy on most functions compared to other state-of-the-art optimization algorithms. In addition, the ETLBO is used to reduce boilers' NOx emissions by optimizing combustion parameters, such as coal supply amount and the air valve. Result shows that ETLBO is well-suited to solve the boiler combustion optimization problem.
更多
查看译文
关键词
optimization,model,extreme learning machine,teaching-learning-based optimization algorithm,evolution computation,boiler combustion optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要