Bootstrapping Interactive Image-Text Alignment for Remote Sensing Image Captioning

IEEE Transactions on Geoscience and Remote Sensing(2023)

引用 0|浏览27
暂无评分
摘要
Recently, remote sensing image captioning has gained significant attention in the remote sensing community. Due to the significant differences in spatial resolution of remote sensing images, existing methods in this field have predominantly concentrated on the fine-grained extraction of remote sensing image features, but they cannot effectively handle the semantic consistency between visual features and textual features. To efficiently align the image-text, we propose a novel two-stage vision-language pre-training-based approach to bootstrap interactive image-text alignment for remote sensing image captioning, called BITA, which relies on the design of a lightweight interactive Fourier Transformer to better align remote sensing image-text features. The Fourier layer in the interactive Fourier Transformer is capable of extracting multi-scale features of remote sensing images in the frequency domain, thereby reducing the redundancy of remote sensing visual features. Specifically, the first stage involves preliminary alignment through image-text contrastive learning, which aligns the learned multi-scale remote sensing features from the interactive Fourier Transformer with textual features. In the second stage, the interactive Fourier Transformer connects the frozen image encoder with a large language model. Then, prefix causal language modeling is utilized to guide the text generation process using visual features. Ultimately, across the UCM-caption, RSICD, and NWPU-caption datasets, the experimental results clearly demonstrate that BITA outperforms other advanced comparative approaches. The code is available at https://github.com/yangcong356/BITA.
更多
查看译文
关键词
Fourier transformer,multimodal information alignment,remote sensing image captioning (RSIC),vision-language pre-training (VLP)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络