Ultra-fast photochemistry in the strong light-matter coupling regime

crossref(2023)

引用 0|浏览3
暂无评分
摘要
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine experiments and simulations to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We demonstrate that by increasing the coupling strength we can reduce such losses and enhance reactivity of the strongly coupled system, in contrast to the theoretical paradigm, which would predict stronger suppression. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the ”bare” molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts ”normally”. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要