Unveilling Chaos in Particle Motion: Analyzing the Impact of Horizon in $f(R)$ Gravity

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
This article is devoted to investigate the effects of $f(R)$ theory in the dynamics of a massless particle near the horizon of a static spherically symmetric (SSS) black hole. Deriving the equations of motion within $f(R)$ gravitational theories, novel solutions for charged and neutral black holes are obtained, introducing a dimensional parameter $a$ in $f(R)=R-2a\sqrt{R}$. Departing from General Relativity, these solutions showcase unique properties reliant on the dynamics of Ricci scalar. Analysis shows that chaos manifests within a specific energy range, with $a$ playing a crucial role. The study underscores the general applicability of the spherically symmetric metric, revealing insights into particle dynamics near black hole horizons. Despite an initially integrable nature, the introduction of harmonic perturbation leads to chaos, aligning with the Kolmogorov-Arnold-Moser theory. This research contributes to a nuanced understanding of black hole dynamics, emphasizing the importance of alternative theories of gravity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要