Computational investigation of homogeneous-heterogeneous reactions in fluid with transport mechanisms: A finite element simulations approach

AIN SHAMS ENGINEERING JOURNAL(2024)

引用 1|浏览3
暂无评分
摘要
There are numerous applications in engineering and industry for homogeneous and heterogeneous chemical reactions in fluid regimes under the influence of nanoparticles and hybrid nanoparticles. This article models homogeneous and heterogeneous chemical reactions in the flow of polymer liquid (glycerin) containing Cu-Al2O3 in the presence of heat and mass transfer. The finite element method is used to quantitatively solve these models. A 76% increase in wall shear stress for the case of simultaneous dispersion of Cu and Al2O3 in comparison of only dispersion of Cu is noticed. Similarly, 44% increase in wall heat flux in noticed due to dispersion Cu and Al2O3 in comparison of dispersion of Cu only. The vortex parameter is responsible for a significant increase in the macro-motion of the fluid particles. Macro-motion gets more influence of micro motion than the influence of micro-motion on the macro-motion of Cu -Al2O3- polymer. To control momentum boundary layer thickness, reduce the diameter of the circular pipe. Magnetic force has the opposite direction of flow. Therefore, fluid motion is a decreasing function of magnetic field intensity. Further, the Lorentz force (magnetic force) for the case of Cu -Al2O3 - polymer is stronger than that for the case of Cu - polymer. Additionally, it can be seen that Cu -Al2O3- polymer experiences more Joule heating than Cu - polymer does. The micromotion is compromised when the curvature parameter is increased. As a result, convective transport slows down and the temperature of Cu- polymer and Cu -Al2O3 - polymers decreases. The result, the rate of conversion of electrical energy into heat speeds up intensity of magnetic field increase as and therefore, fluid temperature increases.
更多
查看译文
关键词
Axisymmetric transport,Chemical reactions,Hybrid nanoparticles,Heat flux,Mass flux,Numerical simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要