Integrative analysis of transcriptome and proteome profiles in primary and recurrent glioblastoma

PROTEOMICS CLINICAL APPLICATIONS(2023)

引用 0|浏览3
暂无评分
摘要
PurposeGlioblastoma (GBM) is the most common and aggressive primary brain tumor characterized by poor prognosis and high recurrence. The underlying molecular mechanism that drives tumor progression and recurrence is unclear. This study is intended to look for molecular and biological changes that play a key role in GBM recurrence.Experimental designAn integrative transcriptomic and proteomic analysis was performed on three primary GBM and three recurrent GBM tissues. Omics analyses were conducted using label-free quantitative proteomics and whole transcriptome sequencing.ResultsA significant difference was found between primary GBM and recurrent GBM at the transcriptional level. Similar to other omics studies of cancer, a weak overlap was observed between transcriptome and proteome, and Procollagen C-Endopeptidase Enhancer 2 (PCOLCE2) was observed to be upregulated at mRNA and protein levels. Analysis of public cancer database revealed that high expression of PCOLCE2 is associated with poor prognosis of patients with GBM and that it may be a potential prognostic indicator. Functional and environmental enrichment analyses revealed significantly altered signaling pathways related to energy metabolism, including mitochondrial ATP synthesis-coupled electron transport and oxidative phosphorylation.Conclusions and clinical relevanceThis study provides new insights into the recurrence process of GBM through combined transcriptomic and proteomic analyses, complementing the existing GBM transcriptomic and proteomic data and suggesting that integrated multi-omics analyses may reveal new disease features of GBM.
更多
查看译文
关键词
GBM,oxidative phosphorylation,PCOLCE2,proteomic,transcriptomic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要