A Novel Interface Database of Graphene Nanoribbon from Density Functional Theory

Ao Wu, Jiangxue Huang,Qijun Huang,Jin He,Hao Wang,Sheng Chang

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
Interfaces play a crucial role in determining the overall performance and functionality of electronic devices and systems. Driven by the data science, machine learning (ML) reveals excellent guidance for material selection and device design, in which an advanced database is crucial for training models with state-of-the-art (SOTA) precision. However, a systematic database of interfaces is still in its infancy due to the difficulties in collecting raw data in experiment and the expensive first-principles computational cost in density functional theory (DFT). In this paper, we construct ample interface structures of graphene nanoribbons (GNR), whose interfacial morphology can be precisely fabricated based on specific molecular precursors. The GNR interfaces serve as promising candidates since their bandgaps can be modulated. Their physical properties including energy bands and density of states (DOS) maps are obtained under reasonable calculation parameters. This database can provide theoretical guidance for the design of electronic devices and accelerate the ML study of various physical quantities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要