The mechanism of action of myricetin against lung adenocarcinoma based on bioinformatics, in silico and in vitro experiments

Naunyn-Schmiedeberg's Archives of Pharmacology(2023)

引用 0|浏览0
暂无评分
摘要
Myricetin is a natural flavonoid with anti-cancer and anti-inflammatory effects, but its mechanism for treating lung adenocarcinoma (LUAD) remains unclearly. Therefore, bioinformatics, in silico and in vitro experiments were employed to elucidate this issue in this study. The core targets of myricetin against LUAD were screened by PharmaMapper (v2017), Assistant for Clinical Bioinformatics, STRING (v11.5) and Cytoscape (v3.8.1). Using Kaplan–Meier Plotter (v2022.04.20), UALCAN (v2021.12.13) and GEPIA (v2.0) databases, the correlation between core genes and the prognosis of LUAD patients were analyzed, and the expression levels of core genes were verified. In silico studies were used to analyze the binding energies and sites of myricetin with core genes. The effects of myricetin on H1975 cells were explored through thiazolyl blue (MTT), cell migration, colony formation and western blot assays. A total of 72 potential targets of myricetin against LUAD were identified through bioinformatics. Among the four core targets obtained by multiple networks and in silico assays, the up-regulated MMP9 (HR = 1.14 (1–1.29), logrank P = 0.046) and down-regulated PIK3R1 (HR = 0.58 (0.51–0.66), logrank P < 1E-16) were positively correlated with poor survival outcomes in LUAD patients. In vitro experiments demonstrated that myricetin inhibited the proliferation and migration of H1975 cells, promoting their apoptosis. Myricetin inhibits the proliferation of H1975 cells and induces cell apoptosis through its influence on the expression levels of MMP1, MMP3, MMP9, and PIK3R1 and regulating the multiple pathways these genes participate in. Both MMP9 and PIK3R1 are potential biomarkers for LUAD.
更多
查看译文
关键词
Myricetin,LUAD,Bioinformatics,Mechanism of action,In silico,In vitro experiments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要