Simulating Quantum Computations on Classical Machines: A Survey

Kieran Young, Marcus Scese,Ali Ebnenasir

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
We present a comprehensive study of quantum simulation methods and quantum simulators for classical computers. We first study an exhaustive set of 150+ simulators and quantum libraries. Then, we short-list the simulators that are actively maintained and enable simulation of quantum algorithms for more than 10 qubits. As a result, we realize that most efficient and actively maintained simulators have been developed after 2010. We also provide a taxonomy of the most important simulation methods, namely Schrodinger-based, Feynman path integrals, Heisenberg-based, and hybrid methods. We observe that most simulators fall in the category of Schrodinger-based approaches. However, there are a few efficient simulators belonging to other categories. We also make note that quantum frameworks form their own class of software tools that provide more flexibility for algorithm designers with a choice of simulators/simulation method. Another contribution of this study includes the use and classification of optimization methods used in a variety of simulators. We observe that some state-of-the-art simulators utilize a combination of software and hardware optimization techniques to scale up the simulation of quantum circuits. We summarize this study by providing a roadmap for future research that can further enhance the use of quantum simulators in education and research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要