A latent linear model for nonlinear coupled oscillators on graphs.

Agam Goyal, Zhaoxing Wu, Richard P. Yim, Binhao Chen, Zihong Xu,Hanbaek Lyu

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization between nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlinear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize. In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively linearized in certain latent dynamic spaces. The key insight is that there is a small number of `latent dynamics filters', each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns. Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要