Fundamental limits of few-layer NbSe_2 microbolometers at terahertz frequencies

K. Shein, E. Zharkova, M. A. Kashchenko, A. I. Kolbatova, A. Lyubchak, L. Elesin, E. Nguyen,A. Semenov,I. Charaev,A. Schilling,G. N. Goltsman,K. S. Novoselov,I. Gayduchenko,D. A. Bandurin

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
The rapid development of infrared spectroscopy, observational astronomy, and scanning near-field microscopy has been enabled by the emergence of sensitive mid- and far-infrared photodetectors. Owing to their exceptional signal-to-noise ratio and fast photoresponse, superconducting hot-electron bolometers (HEBs) have become a critical component in these applications. While superconducting HEBs are traditionally made from sputtered superconducting thin films like Nb or NbN, the potential of layered van der Waals (vdW) superconductors is untapped at THz frequencies. Here, we report the fabrication of superconducting HEBs out of few-layer NbSe_2 microwires. By improving the interface between NbSe_2 and metal leads connected to a broadband antenna, we overcome the impedance mismatch between this vdW superconductor and the radio frequency (RF) readout circuitry that allowed us to achieve large responsivity THz detection over the range from 0.13 to 2.5 THz with minimum noise equivalent power of 7 pW√(Hz). Using the heterodyne sub-THz mixing technique, we reveal that NbSe_2 superconducting HEBs are relatively fast and feature a characteristic response time in the nanosecond range limited by the slow heat escape to the bath through a SiO_2 layer, on which they are assembled, in agreement with energy relaxation model. Our work expands the family of materials for superconducting HEBs technology, reveals NbSe_2 as a promising platform, and offers a reliable protocol for the in-lab production of custom bolometers using the vdW assembly technique.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要