Acoustic Vortex in Waveguide with Chiral Gradient Sawtooth Metasurface

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
The acoustic vortex states with spiral phase dislocation that can carry orbital angular moment (OAM) have aroused many research interests in recent years. The mainstream methods of generating acoustic vortex are based on Huygens-Fresnel principle to modulate the wavefront to create spatial spiral phase dislocation. In this work, we propose an entirely new scenario to generate acoustic vortex in a waveguide with chiral gradient sawtooth metasurface. The physical mechanism of our method is to lift the degenerate dipole eigenmodes through the scattering effect of the chiral surface structure, and then the superposition of them will generate both and order vortices in place. Compared to the existing methods of acoustic vortex production, our design has many merits, such as easy to manufacture and control, the working frequency is broadband, sign of vortex order can be readily flipped. Both the full-wave simulations and experimental measurements validate the existence of the acoustic vortices. The torque effect of the acoustic vortices is also successfully performed by rotating a foam disk as a practical application. Our work opens up a new route for generating acoustic vortex and could have potential significances in microfluidics, acoustic tweezers and ultrasonic communication, etc.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要