An in silico analysis of unsteady flow structures in a microaxial blood pump under a pulsating rotation speed

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE(2024)

引用 0|浏览0
暂无评分
摘要
Background and objective: Ventricular assist devices (VADs) are generally designed to perform continuous flow. However, it has been proven that continuous flow, which is not a physiological hemodynamic state, may cause severe complications such as gastrointestinal bleeding, pulmonary hypertension, and ventricular suction. For these reasons, many pulsating blood pump control strategies have been proposed and have the potential for application in percutaneous ventricular assist devices (pVADs) or microaxial blood pumps. A few cases report extra hemolysis when introducing pulsating speed, while none involve blood pumps. This research's primary purpose is to evaluate the potential hemolysis of pVAD under pulsating flow conditions.Methods: First, the pulsating flow state is deduced using a heart failure model and varying speed. The heart model is established according to the pathology state collected from a clinical check. The rotation speed and boundary physical state are set to fit the heart failure model. The computational fluid dynamics (CFD) method with the hemolysis prediction model is performed. Furthermore, we used proper orthogonal decomposition (POD) analysis to reconstruct the flow field and obtain more details about shearing and transporting effects.Results: (1) As a variable rotational speed was introduced, no significant gain in hemolysis accumulation appeared in pVAD. This is quite different from long-term implantable VADs. (2) Pulsation affects hemolysis mainly through pressure (or normal stress). Variable rotational speed affects hemolysis mainly through flow instability. (3) Variable rotational speed will increase the instability and influence hemolysis by transporting and shearing effects, while the transporting effect is more significant.Conclusions: The unsteady flow state will affect the spatial distribution of hemolysis, which should be taken into account during control strategy and impeller shape design.
更多
查看译文
关键词
Blood pump,Hemolysis,Heart modeling and simulation,Pulsating flow,Computational fluid dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要