MicroRNA-584-5p/RUNX family transcription factor 2 axis mediates hypoxia-induced osteogenic differentiation of periosteal stem cells

World journal of stem cells(2023)

引用 0|浏览4
暂无评分
摘要
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells (PSCs) into osteoblasts or chondrocytes; however, the underlying mechanisms remain unclear. AIM To determine the effect of hypoxia on PSCs, and the expression of microRNA-584-5p (miR-584-5p) and RUNX family transcription factor 2 (RUNX2) in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxia-induced osteogenic differentiation of PSCs. METHODS In this study, we isolated primary mouse PSCs and stimulated them with hypoxia, and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation. RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules, intracellular calcium ion levels, and alkaline phosphatase (ALP) activity in PSCs. Osteogenic differentiation-related factors such as RUNX2, bone morphogenetic protein 2, hypoxia-inducible factor 1-alpha, and ALP were upregulated; in contrast, miR-584-5p was downregulated in these cells. Furthermore, upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation. RUNX2 was the target gene of miR-584-5p, antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation. CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia.
更多
查看译文
关键词
osteogenic differentiation,microrna-584-5p/runx family transcription factor,stem cells,hypoxia-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要