Disruption of somatosensory cortex impairs motor learning and retention

Journal of neurophysiology(2023)

引用 0|浏览0
暂无评分
摘要
This study tests for a function of the somatosensory cortex, that, in addition to its role in processing somatic afferent information, somatosensory cortex contributes both to motor learning and the stabilization of motor memory. Continuous theta-burst magnetic stimulation (cTBS) was applied, before force-field training to disrupt activity in either the primary somatosensory cortex, primary motor cortex, or a control zone over the occipital lobe. Tests for retention and relearning were conducted after a 24 h delay. Analysis of movement kinematic measures and force-channel trials found that cTBS to somatosensory cortex disrupted both learning and subsequent retention, whereas cTBS to motor cortex had little effect on learning but possibly impaired retention. Basic movement variables are unaffected by cTBS suggesting that the stimulation does not interfere with movement but instead disrupts changes in the cortex that are necessary for learning. In all experimental conditions, relearning in an abruptly introduced force field, which followed retention testing, showed extensive savings, which is consistent with previous work suggesting that more cognitive aspects of learning and retention are not dependent on either of the cortical zones under test. Taken together, the findings are consistent with the idea that motor learning is dependent on learning-related activity in the somatosensory cortex.NEW & NOTEWORTHY This study uses noninvasive transcranial magnetic stimulation to test the contribution of somatosensory and motor cortex to human motor learning and retention. Continuous theta-burst stimulation is applied before learning; participants return 24 h later to assess retention. Disruption of the somatosensory cortex is found to impair both learning and retention, whereas disruption of the motor cortex has no effect on learning. The findings are consistent with the idea that motor learning is dependent upon learning-related plasticity in somatosensory cortex.
更多
查看译文
关键词
motor cortex,motor learning,retention,somatosensory cortex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要