Exposure hazards of particles and volatile organic compounds emitted from material extrusion 3D printing: Consolidation of chamber study data

ENVIRONMENT INTERNATIONAL(2023)

引用 0|浏览7
暂无评分
摘要
Ultrafine particles and volatile organic compounds (VOCs) have been detected from material extrusion 3D printing, which is widely used in non-industrial environments. This study consolidates data of 447 particle emission and 58 VOC emission evaluations from a chamber study using a standardized testing method with various 3D printing scenarios. The interquartile ranges of the observed emission rates were 109-1011 #/h for particles and 0.2-1.0 mg/h for total VOC. Print material contributed largely to the variations of particle and total VOC emissions and determined the most abundantly emitted VOCs. Printing conditions and filament specifications, included printer brand, print temperature and speed, build plate heating setup, filament brand, color and composite, also affected emissions and resulted in large variations observed in emission profiles. Multiple regression showed that particle emissions were more impacted by various print conditions than VOC emissions. According to indoor exposure modeling, personal and residential exposure scenarios were more likely to result in high exposure levels, often exceeding recommended exposure limits. Hazardous VOCs commonly emitted from 3D printing included aromatics, aldehydes, alcohols, ketones, esters and siloxanes, among which were various carcinogens, irritants and developmental and reproductive toxins. Therefore, 3D printing emits a complex mixture of ultrafine particles and various hazardous chemicals, exposure to which may exceed recommended exposure limits and potentially induce acute, chronic, or developmental health effects for users depending on exposure scenarios.
更多
查看译文
关键词
Fused filament fabrication,Ultrafine particle,VOC,Exposure modeling,Indoor air quality,Health implications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要