Incorporating Modern Fault Ride-Through Standards into the Short-Circuit Calculation of Distribution Networks

SENSORS(2023)

引用 0|浏览5
暂无评分
摘要
Modern fault ride-through (FRT) standards in many countries require distributed generators to remain connected for a specified period during the fault by providing reactive current, to support voltage and prevent a massive renewable outage. As a result, short-circuit current is not constant, but it varies depending on the current and disconnection order of distributed generators (DGs). This time-varying short-circuit current complicates the estimation of the time it will take for an overcurrent relay or fuse to trip. The existing short-circuit calculation algorithms usually assume that the fault current is constant throughout the whole period of fault. This assumption may result in incorrect conclusions regarding the tripping time of protective devices in networks with high renewable penetration. This paper incorporates modern FRT standards into the fault analysis by considering the influence of fault current variations on the protective devices (relays, fuses), significantly increasing the accuracy of the estimated tripping time. Simulations carried out in a 13-bus and the IEEE 8500-node network indicate that the traditional short-circuit calculation approaches may miscalculate the tripping time of protective devices, with deviations up to 80 s, when applied to networks complying with modern FRT standards.
更多
查看译文
关键词
distribution networks,fault analysis,fault ride-through,FRT standards,fuse melting time,relay tripping time,short-circuit calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要