SwipeFormer: Transformers for mobile touchscreen biometrics

EXPERT SYSTEMS WITH APPLICATIONS(2024)

引用 0|浏览1
暂无评分
摘要
The growing number of mobile devices over the past few years brings a large amount of personal information, which needs to be properly protected. As a result, several mobile authentication methods have been developed. In particular, behavioural biometrics has become one of the most relevant methods due to its ability to extract the uniqueness of each subject in a secure, non-intrusive, and continuous way. This article presents SwipeFormer, a novel Transformer-based system for mobile subject authentication by means of swipe gestures in an unconstrained scenario (i.e., subjects could use their personal devices freely, without restrictions on the direction of swipe gestures or the position of the device). Our proposed system contains two modules: (i) a Transformer-based feature extractor, and (ii) a similarity computation module. Mobile data from the touchscreen and different background sensors (accelerometer and gyroscope) have been studied, including in the analysis both Android and iOS operating systems. A complete analysis of SwipeFormer is carried out using an in-house large-scale database acquired in unconstrained scenarios. In these operational conditions, SwipeFormer achieves Equal Error Rate (EER) values of 6.6% and 3.6% on Android and iOS respectively, outperforming the state of the art. In addition, we evaluate SwipeFormer on the popular publicly available databases Frank DB and HuMIdb, achieving EER values of 11.0% and 5.0% respectively, outperforming previous approaches under the same experimental setup.
更多
查看译文
关键词
Behavioural biometrics,Touchscreen,Swipe verification,Transformers,Deep learning,Mobile devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要