In Situ Atomic-Scale Evidence of Unconventional Plastic Behavior at The Crack Tip in AuCu Nanocrystals

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览3
暂无评分
摘要
Understanding the plastic behavior of crack tips is crucial for improving the fracture toughness of nanometals. Although many studies are carried out, most previous studies focus on pure metals, and how the crack tip accommodates the plastic deformation of highly concentrated solid-solution alloys is unclear owing to a lack of direct atomic-scale evidence. In this study, the atomic-scale plastic behavior of the crack tip in face-centered cubic (FCC) AuCu alloy nanocrystals is observed in situ, which provides direct evidence that plastic deformation is governed by the generation of deformation twins and hexagonal close-packed (HCP) 2H and 4H phases, recurrence of reversible FCC-HCP phase transitions, and detwinning, which are rarely observed in pure metals. This unusual behavior originates from the inherent chemical inhomogeneity of the AuCu alloy, which inhibits twin thickening via partial dislocations on the adjacent plane, instead of random generation of deformation twins, phase transitions, and reversible processes. This naturally implies a similar behavior at the crack tip in other highly concentrated solid-solution alloys, including high-medium-entropy alloys, providing important insights that greatly improve the understanding of the fracture toughness of metallic materials. Several unconventional and seldom-reported deformation modes are observed at the crack tip of AuCu alloy nanocrystals, including the random generation of hexagonal close-packed (HCP) 2H and 4H phases, recurrence of the reversible face-centered cubic-HCP phase transition, and nanotwins (T), which originates from the chemical inhomogeneity induced by the solid-solution atoms in the AuCu alloy.image
更多
查看译文
关键词
chemical inhomogeneity,crack tip,deformation twin,in situ,phase transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要