Direct generation of Zn metal using laser-induced ZnS to eradicate carbon emissions from electrolysis Zn production

FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING(2024)

引用 0|浏览2
暂无评分
摘要
In response to the goal of net-zero emissions proposed by Intergovernmental Panel on Climate Change, Chinese government has pledged that carbon emissions will peak by 2030, and achieve carbon neutrality by 2060. However, the high carbon energy structure of traditional industries has aggravated environmental problems, such as greenhouse effect and air pollution. The goal of carbon neutrality will be difficult to achieve without the development of disruptive theories and technologies. The electrolytic zinc industry requires high-temperature roasting at & SIM;1000 & DEG;C, generating large amounts of greenhouse gases and SO2. High concentrations of sulfuric acid (200 g/L) are subsequently used for electrolysis, and each ton of zinc produced generates 50 kg of anode slime with lead content of up to 16%, as well as 0.35 m3 of wastewater containing zinc and lead. To solve these problems, an optical metallurgy method is proposed in this study. The proposed method uses laser-induced photoreduction to decompose ZnS and reduce metal ions to metal. Results indicate that Zn0 and S8 can be detected on the surface of ZnS at a specific wavelength and laser fluence. The generation mechanism of Zn0 is such that laser induces an electronic transition that breaks ionic bond in ZnS, resulting in its decomposition and photoreduction to Zn0 under an inert argon gas atmosphere. This method does not reduce other metals in the mineral since it does not use high-temperature roasting, providing a new way of producing high-purity metal without greenhouse gas emissions and heavy metal pollution caused by traditional zinc electrolysis.
更多
查看译文
关键词
Laser metallurgy,ZnS,Photochemical reduction,Zinc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要