Investigation of oxidation behaviors of the -TiAl substrate and plasma grown Mo-Si-Ti coating at 750 C

VACUUM(2023)

引用 0|浏览1
暂无评分
摘要
Here, we report high output voltage generation by employing p-type ZnO nanowires as an integral part of vertically integrated nanowire generators (VING). Study has been carried out to generate high piezoelectric voltage by introducing impurities to ZnO nanowires from group V (P, As, Sb) elements which worked as acceptor impurities for intrinsically n-type ZnO nanowires by which reverse leakage current through nanowires has been minimized. Three distinct doping concentrations (2, 4 and 6 wt %) of (P, As, and Sb) have been incorporated in ZnO nanowires at room temperature. X-ray photoelectron spectra (XPS) has indicated the presence of Sb-Zn-2V(Zn), P-Zn + 2V(Zn), As-Zn-2V(Zn) complexes acceptors for Sb, P, As doping respectively. Gradual rise in piezoelectric output voltage has been observed. P/ZnO nanowires generated output voltages of 0.9 V, 1.45 V and 1.85 V respectively. For As/ZnO nanowires, output voltages are 1.25 V, 1.51 V and 1.92 V and with Sb doping recorded voltage values are 1.78 V 2.1 V and 2.5 V respectively. To Acquire optimal output voltage doped ZnO nanowires have been further oxidized (with O-2) to mitigate the screening effect and maximum voltage generated by oxidized ZnO are 2.38 V, 2.86 V, and 3.45 V respectively.
更多
查看译文
关键词
oxidation behaviors,mo-si-ti
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要