Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe2

Journal of the American Chemical Society(2023)

引用 0|浏览8
暂无评分
摘要
Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (similar to 0.32 W m(-1) K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of similar to 2.4 at similar to 570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.
更多
查看译文
关键词
thermoelectric performance,structural disorder enhances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要