Block Low-Rank Preconditioner with Shared Basis for Stochastic Optimization

NeurIPS 2023(2023)

引用 0|浏览14
暂无评分
摘要
Adaptive methods with non-diagonal preconditioning have shown state-of-the-art results on various tasks. However, their computational complexity and memory requirement makes it challenging to scale these methods to modern neural network architectures. To address this challenge, some previous works have adopted block-diagonal preconditioners. However, the memory cost of storing the block-diagonal matrix remains substantial, leading to the use of smaller block sizes and ultimately resulting in suboptimal performance. To reduce the time and memory complexity without sacrificing performance, we propose approximating each diagonal block of the second moment matrix by low-rank matrices and enforcing the same basis for the blocks within each layer. We provide theoretical justification for such sharing and design an algorithm to efficiently maintain this shared-basis block low-rank approximation during training. Our results on a deep autoencoder and a transformer benchmark demonstrate that the proposed method outperforms first-order methods with slightly more time and memory usage, while also achieving competitive or superior performance compared to other second-order methods with less time and memory usage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络