Telecom-band quantum dot technologies for long-distance quantum networks

NATURE NANOTECHNOLOGY(2023)

引用 0|浏览6
暂无评分
摘要
A future quantum internet is expected to generate, distribute, store and process quantum bits (qubits) over the world by linking different quantum nodes via quantum states of light. To facilitate long-haul operations, quantum repeaters must operate at telecom wavelengths to take advantage of both the low-loss optical fibre network and the established technologies of modern optical communications. Semiconductor quantum dots have thus far shown exceptional performance as key elements for quantum repeaters, such as quantum light sources and spin-photon interfaces, but only in the near-infrared regime. Therefore, the development of high-performance telecom-band quantum dot devices is highly desirable for a future solid-state quantum internet based on fibre networks. In this Review, we present the physics and technological developments towards epitaxial quantum dot devices emitting in the telecom O- and C-bands for quantum networks, considering both advanced epitaxial growth for direct telecom emission and quantum frequency conversion for telecom-band down-conversion of near-infrared quantum dot devices. We also discuss the challenges and opportunities for future realization of telecom quantum dot devices with improved performance and expanded functionality through hybrid integration. The Review discusses epitaxial quantum dot devices emitting in the telecom bands for quantum network devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要