Variable False Alarm Rate Detection Framework for Phased Array Radar

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS(2023)

引用 0|浏览1
暂无评分
摘要
This article considers a low signal-to-noise ratio (SNR) target detection problem for phased array radar, where classical constant false alarm rate detection framework would cause missed detection. To overcome this problem, we propose a variable false alarm rate detection framework for the phased array radar to ensure the detection performance for low-SNR targets in multistage target detection. First, exploiting the previous detected results, the searching area of interest is divided into multiple subareas, while automatically reducing the false alarm probability of each range section of each frame. Then, a joint allocation strategy of beam and time resources accounting for maximizing the weighted sum of SNRs of spatial sectors in the whole surveillance area of the phased array radar along with some practical coupled constraints, is proposed. Next, the fuzzy analytic hierarchy process and convex optimization methods are, respectively, developed to obtain beam and time resource allocation scheme. Finally, the effectiveness and superiority of the proposed framework are highlighted and evaluated by numerical simulations.
更多
查看译文
关键词
Radar,Radar detection,Resource management,Phased arrays,Surveillance,Signal to noise ratio,Object detection,Joint beam and time allocation (JBTA),target searching,variable false alarm rate (VFAR) detection,phased array radar
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要