Sequential Affinity Learning for Video Restoration

MM '23: Proceedings of the 31st ACM International Conference on Multimedia(2023)

引用 1|浏览5
暂无评分
摘要
Video restoration networks aim to restore high-quality frame sequences from degraded ones. However, traditional video restoration methods heavily rely on temporal modeling operators or optical flow estimation, which limits their versatility. The aim of this work is to present a novel approach for video restoration that eliminates inefficient temporal modeling operators and pixel-level feature alignment in the network architecture. The proposed method, Sequential Affinity Learning Network (SALN), is designed based on an affinity mechanism that establishes direct correspondences between the Query frame, degraded sequence, and restored frames in latent space. This unique perspective allows for more accurate and effective restoration of video content without relying on temporal modeling operators or optical flow estimation techniques. Moreover, we enhanced the design of the channel-wise self-attention block to improve the decoder's performance for video restoration. Our method outperformed previous state-of-the-art methods by a significant margin in several classic video tasks, including video deraining, video dehazing, and video waterdrop removal, demonstrating excellent efficiency. As a novel network that differs significantly from previous video restoration methods, SALN aims to provide innovative ideas and directions for video restoration. Our contributions include proposing a novel affinity-based approach for video restoration, enhancing the design of the channel-wise self-attention block, and achieving state-of-the-art performance on several classic video tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要