Ion-induced bias in Ag 2 S luminescent nanothermometers.

Nanoscale(2023)

引用 0|浏览15
暂无评分
摘要
Luminescence nanothermometry allows measuring temperature remotely and in a minimally invasive way by using the luminescence signal provided by nanosized materials. This technology has allowed, for example, the determination of intracellular temperature and monitoring of thermal processes in animal models. However, in the biomedical context, this sensing technology is crippled by the presence of bias (cross-sensitivity) that reduces the reliability of the thermal readout. Bias occurs when the impact of environmental conditions different from temperature also modifies the luminescence of the nanothermometers. Several sources that cause loss of reliability have been identified, mostly related to spectral distortions due to interaction between photons and biological tissues. In this work, we unveil an unexpected source of bias induced by metal ions. Specifically, we demonstrate that the reliability of AgS nanothermometers is compromised during the monitoring of photothermal processes produced by iron oxide nanoparticles. The observed bias occurs due to the heat-induced release of iron ions, which interact with the surface of the AgS nanothermometers, enhancing their emission. The results herein reported raise a warning to the community working on luminescence nanothermometry, since they reveal that the possible sources of bias in complex biological environments, rich in molecules and ions, are more numerous than previously expected.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要