OxPhos in adipose tissue macrophages regulated by BTK enhances their M2-like phenotype and confers a systemic immunometabolic benefit in obesity.

bioRxiv (Cold Spring Harbor Laboratory)(2024)

引用 0|浏览11
暂无评分
摘要
Bruton's tyrosine kinase (BTK) is a non-receptor bound kinase involved in pro-inflammatory signalling in activated macrophages, however, its role within adipose tissue macrophages remains unclear. We have demonstrated that BTK signalling regulates macrophage M2-like polarisation state by up-regulating subunits of mitochondrially encoded electron transport chain Complex I (ND4 and NDL4) and Complex IV (mt-CO1, mt-CO2 and mt-CO3) resulting in an enhanced rate of oxidative phosphorylation (OxPhos) in an NF-κB independent manner. Critically, BTK expression is elevated in adipose tissue macrophages from obese individuals with diabetes, while key mitochondrial genes (mtC01, mtC02 and mtC03) are decreased in inflammatory myeloid cells from obese individuals. Inhibition of BTK signalling either globally (Xid mice) or in myeloid cells (LysMCreBTK), or therapeutically (Acalabrutinib) protects HFD-fed mice from developing glycaemic dysregulation by improving signalling through the IRS1/Akt/GSK3β pathway. The beneficial effects of acalabrutinib treatment are lost in macrophage ablated mice. Inhibition of BTK signalling in myeloid cells but not B-cells, induced a phenotypic switch in adipose tissue macrophages from a pro-inflammatory M1-state to a pro-resolution M2-like phenotype, by shifting macrophage metabolism towards OxPhos. This reduces both local and systemic inflammation and protected mice from the immunometabolic consequences of obesity. Therefore, in BTK we have identified a macrophage specific, druggable target that can regulate adipose tissue polarisation and cellular metabolism that can confer systematic benefit in metabolic syndrome.
更多
查看译文
关键词
adipose tissue macrophages,obesity,systemic immunometabolic benefit,btk
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要