Controllable Unsupervised Snow Synthesis by Latent Style Space Manipulation.

Sensors (Basel, Switzerland)(2023)

Cited 0|Views8
No score
Abstract
In the field of intelligent vehicle technology, there is a high dependence on images captured under challenging conditions to develop robust perception algorithms. However, acquiring these images can be both time-consuming and dangerous. To address this issue, unpaired image-to-image translation models offer a solution by synthesizing samples of the desired domain, thus eliminating the reliance on ground truth supervision. However, the current methods predominantly focus on single projections rather than multiple solutions, not to mention controlling the direction of generation, which creates a scope for enhancement. In this study, we propose a generative adversarial network (GAN)-based model, which incorporates both a style encoder and a content encoder, specifically designed to extract relevant information from an image. Further, we employ a decoder to reconstruct an image using these encoded features, while ensuring that the generated output remains within a permissible range by applying a self-regression module to constrain the style latent space. By modifying the hyperparameters, we can generate controllable outputs with specific style codes. We evaluate the performance of our model by generating snow scenes on the Cityscapes and the EuroCity Persons datasets. The results reveal the effectiveness of our proposed methodology, thereby reinforcing the benefits of our approach in the ongoing evolution of intelligent vehicle technology.
More
Translated text
Key words
intelligent vehicles, snow scenes, unpaired image-to-image translation, diversity, style latent space, Gaussian distribution
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined