Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome.

Insects(2023)

引用 0|浏览4
暂无评分
摘要
Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms.
更多
查看译文
关键词
Cecropin, antimicrobial peptide, insect, transcriptomics, genomics, 1KITE
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要