A Soil Moisture Profile Conceptual Framework to Identify Water Availability and Recovery in Green Stormwater Infrastructure

Hydrology(2023)

引用 0|浏览3
暂无评分
摘要
The recovery of soil void space through infiltration and evapotranspiration processes within green stormwater infrastructure (GSI) is key to continued hydrologic function. As such, soil void space recovery must be well understood to improve the design and modeling and to provide realistic expectations of GSI performance. A novel conceptual framework of soil moisture behavior was developed to define the soil moisture availability at pre-, during, and post-storm conditions. It uses soil moisture measurements and provides seven critical soil moisture points (A, B, C, D, E, F, F '') that describe the soil-water void space recovery after a storm passes through a GSI. The framework outputs a quantification of a GSI subsurface hydrology, including average soil moisture, the duration of saturation, soil moisture recession, desaturation time, infiltration rates, and evapotranspiration (ET) rates. The outputs the framework provide were compared to the values that were obtained through more traditional measurements of infiltration (through spot field infiltration testing), ET (through a variety of methods to quantify GSI ET), soil moisture measurements (through the soil water characteristics curve), and the duration of saturation/desaturation time (through a simulated runoff test), all which provided a strong justification to the framework. This conceptual framework has several applications, including providing an understanding of a system's ability to hold water, the post-storm recovery process, GSI unit processes (ET and infiltration), important water contents that define the soil-water relationship (such as field capacity and saturation), and a way to quantify long-term changes in performance all through minimal monitoring with one or more soil moisture sensors. The application of this framework to GSI design promotes a deeper understanding of the subsurface hydrology and site-specific soil conditions, which is a key advancement in the understanding of long-term performance and informing GSI design and maintenance.
更多
查看译文
关键词
soil moisture,green stormwater infrastructure,soil moisture conceptual framework,infiltration and evapotranspiration,sub-surface hydrology,GSI design and maintenance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要