Extracellular matrix sulfation in the tumor microenvironment stimulates cancer stemness and invasiveness

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览3
暂无评分
摘要
Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, we demonstrate that PGs are heavily expressed in lung adenocarcinoma patients in correlation with invasive phenotype and poor prognosis. We developed a bioengineered human lung tumor model which recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density and porosity. Our model reveals that increased sulfation stimulates extensive proliferation, epithelial-mesenchymal transition and stemness in cancer cells. We identified the FAK-PI3K-mTOR signaling axis as a mediator of sulfation-induced molecular changes in cells upon activation of a distinct set of RTKs within tumor-mimetic hydrogels. We demonstrate that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG-rich patient tumors through employing integrative omics and network modeling approaches. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
extracellular matrix sulfation,microenvironment stimulates cancer stemness,tumor microenvironment,extracellular matrix
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要