Robust Sparsification for Matroid Intersection with Applications

Chien-Chung Huang, François Sellier

ACM-SIAM Symposium on Discrete Algorithms(2023)

引用 0|浏览0
暂无评分
摘要
Matroid intersection is a classical optimization problem where, given two matroids over the same ground set, the goal is to find the largest common independent set. In this paper, we show that there exists a certain "sparsifer": a subset of elements, of size $O(|S^{opt}| \cdot 1/\varepsilon)$, where $S^{opt}$ denotes the optimal solution, that is guaranteed to contain a $3/2 + \varepsilon$ approximation, while guaranteeing certain robustness properties. We call such a small subset a Density Constrained Subset (DCS), which is inspired by the Edge-Degree Constrained Subgraph (EDCS) [Bernstein and Stein, 2015], originally designed for the maximum cardinality matching problem in a graph. Our proof is constructive and hinges on a greedy decomposition of matroids, which we call the density-based decomposition. We show that this sparsifier has certain robustness properties that can be used in one-way communication and random-order streaming models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要