Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration.

Kenneth Wu,Namrita Dhillon, Antone Bajor, Sara Abrahamson,Rohinton T Kamakaka

bioRxiv : the preprint server for biology(2023)

引用 0|浏览2
暂无评分
摘要
The interplay between nucleosomes and transcription factors leads to programs of gene expression. Transcriptional silencing involves the generation of a chromatin state that represses transcription and is faithfully propagated through DNA replication and cell division. Using multiple reporter assays, including directly visualizing transcription in single cells, we investigated a diverse set of UAS enhancers and core promoters for their susceptibility to heterochromatic gene silencing. These results show that heterochromatin only stably silences weak and stress induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements and the partial repression did not result in bistable expression states. Permutation analysis of different UAS enhancers and core promoters indicate that both elements function together to determine the susceptibility of regulatory sequences to repression. Specific histone modifiers and chromatin remodellers function in an enhancer specific manner to aid these elements to resist repression suggesting that Sir proteins likely function in part by reducing nucleosome mobility. We also show that the strong housekeeping regulatory elements can be repressed if silencer bound Sir1 is increased, suggesting that Sir1 is a limiting component in silencing. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating type gene regulatory elements but not strong housekeeping gene regulatory sequences which could help explain why these genes are often found at the boundaries of silenced domains.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要