Neighborhood Homophily-based Graph Convolutional Network

PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023(2023)

引用 0|浏览5
暂无评分
摘要
Graph neural networks (GNNs) have been proved powerful in graph-oriented tasks. However, many real-world graphs are heterophilous, challenging the homophily assumption of classical GNNs. To solve the universality problem, many studies deepen networks or concatenate intermediate representations, which does not inherently change neighbor aggregation and introduces noise. Recent studies propose new metrics to characterize the homophily, but rarely consider the correlation of the proposed metrics and models. In this paper, we first design a new metric, Neighborhood Homophily (NH), to measure the label complexity or purity in node neighborhoods. Furthermore, we incorporate the metric into the classical graph convolutional network (GCN) architecture and propose Neighborhood Homophily-based Graph Convolutional Network (NHGCN). In this framework, neighbors are grouped by estimated NH values and aggregated from different channels, and the resulting node predictions are then used in turn to estimate and update NH values. The two processes of metric estimation and model inference are alternately optimized to achieve better node classification. NHGCN achieves top overall performance on both homophilous and heterophilous benchmarks, with an improvement of up to 7.4% compared to the current SOTA methods.
更多
查看译文
关键词
graph neural networks,node classification,homophily
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要