Monolayer TiC-A high-performance Dirac anode with ultralow diffusion barriers and high energy densities for Li-ion and Na-ion batteries

APPLIED SURFACE SCIENCE(2024)

引用 2|浏览0
暂无评分
摘要
Two-dimensional Dirac materials have stimulated substantial research interest as binder-free anodes in metal ion batteries, owing to their ultrahigh electronic conductivity, large specific area, and higher energy density. Here, using first-principles density functional theory calculations, we have investigated the feasibility monolayer TiC as a potential anode material for Li/Na-ion batteries. The results indicate that monolayer TiC exhibits excellent dynamical and thermal stability. The electronic structure of monolayer TiC shows semimetallic characteristics with a Dirac cone at the M high symmetry point and the formation of Ti or vacancies transforms the Dirac cone into a nodal loop or a nodal surface, respectively. Thus, monolayer TiC possesses superior electrical conductivity, which can be further enhanced by the formation of Ti or C vacancies in the material. Furthermore, the calculated adsorption energy values of-0.85 and-0.46 eV for Li-ion and ion, respectively, indicate that Li/Na atom adsorption over monolayer TiC is a favorable process. The density of states plots show that after the adsorption of a single Li/Na atom, monolayer TiC maintains its metallic state, which is advantageous for the diffusion of stored electrons. Most remarkably, monolayer TiC exhibits energy densities of 2684 and 2015 mWh/g for Li and Na, respectively, which are significantly higher than commercial graphite and most other 2D anode materials. The fully loaded TiC anode exhibits excellent cycle stability with volume expansions as low as 0.13 and 0.11%, for Li and Na, respectively. Furthermore, ultrafast diffusivity with low energy barriers of 0.02 and 0.10 eV is found in monolayer TiC for Li-ion and Na-ion, respectively, which suggests that it has an excellent charge/discharge capability. These exceptional properties make monolayer TiC an excellent candidate as an anode material for Li-ion and Na-ion batteries. Finally, SiC(111) has been proposed as a candidate substrate for monolayer TiC due to its minimal lattice mismatch.
更多
查看译文
关键词
Lithium-ion and sodium-ion batteries,2D Dirac anode,Energy barrier,Energy density,First-principles calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要