4D Optical fibers based on shape-memory polymers

Nature Communications(2023)

引用 0|浏览13
暂无评分
摘要
Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. In particular, we show that distinct designs of fabricated optical fibers can maintain efficient light transmission upon completion of multiple temperature-triggered bending/straightening cycles. Such fibers are also programmed into more complex shapes including coils or near 180 ° curvatures for delivering laser light around obstacles. Finally, a shape-memory exposed-core fiber is employed in fiber evanescent wave spectroscopy experiments to optimize the performance of the sensing scheme. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.
更多
查看译文
关键词
Actuators,Fibre optics and optical communications,Polymers,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要