Physiological and biochemical responses of soft coral Sarcophyton trocheliophorum to doxycycline hydrochloride exposure

SCIENTIFIC REPORTS(2023)

引用 0|浏览1
暂无评分
摘要
In light of the rapid expansion of the marine aquaculture industry, there has been widespread and irregular usage of aquatic drugs to combat biological diseases, which significantly impact the neighboring aquatic ecosystems. This study delves into the impact of the antibiotic aquatic drug known as doxycycline hydrochloride (DOX) on offshore soft corals, providing valuable data for the responsible use and management of aquatic drugs. In this investigation, we subjected Sarcophyton trocheliophorum to acute exposure to varying concentrations of DOX (0, 1, 5, and 10 mg L-1). We meticulously assessed critical parameters and observed alterations in protein levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO), malondialdehyde (MDA) levels, Acid phosphatase (ACP) activity, alkaline phosphatase (AKP) activity, glutathione (GSH) concentration, glutathione S-transferase (GST) activity, glutathione Peroxidase (GSH-Px) activity, zooxanthellae density, and chlorophyll content. Our findings reveal that in the presence of DOX-induced environmental stress, there is a significant increase in LPO, MDA, chlorophyll, carotenoid levels, and the activities of ACP, GST, and GSH-Px in soft corals. Simultaneously, there is a noteworthy decrease in zooxanthellae density. Additionally, the protein concentration and SOD activity in soft corals experience substantial reduction when exposed to 5 mg L-1 DOX. Notably, CAT activity varies significantly in environments with 1 and 10 mg L-1 DOX. Moreover, these conditions exhibit a discernible influence on AKP activity, GSH content, and chlorophyll levels. These findings suggest that DOX exposure carries the potential for toxicity in aquaculture settings, affecting protein synthesis in soft corals and influencing oxidative stress, lipid peroxidation, immunity, and detoxification processes within these organisms. There is also a risk of compromising the coral defense system, potentially leading to coral bleaching. Furthermore, this study underscores the significant impact on photosynthesis, growth, and the metabolic dynamics of the coral-zooxanthellae symbiotic system. Consequently, our research offers vital insights into the mortality and bleaching effects of aquatic drugs on marine corals, offering a foundation for the prudent use and management of such substances.
更多
查看译文
关键词
soft coral sarcophyton trocheliophorum,hydrochloride exposure,biochemical responses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要