Breakdown of effective-medium theory by a photonic spin Hall effect

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Effective-medium theory pertains to the theoretical modelling of homogenization, which aims to replace an inhomogeneous structure of subwavelength-scale constituents with a homogeneous effective medium. The effective-medium theory is fundamental to various realms, including electromagnetics and material science, since it can largely decrease the complexity in the exploration of light-matter interactions by providing simple acceptable approximation. Generally, the effective-medium theory is thought to be applicable to any all-dielectric system with deep-subwavelength constituents, under the condition that the effective medium does not have a critical angle, at which the total internal reflection occurs. Here we reveal a fundamental breakdown of the effective-medium theory that can be applied in very general conditions: showing it for deep-subwavelength all-dielectric multilayers even without critical angle. Our finding relies on an exotic photonic spin Hall effect, which is shown to be ultra-sensitive to the stacking order of deep-subwavelength dielectric layers, since the spin-orbit interaction of light is dependent on slight phase accumulations during the wave propagation. Our results indicate that the photonic spin Hall effect could provide a promising and powerful tool for measuring structural defects for all-dielectric systems even in the extreme nanometer scale.
更多
查看译文
关键词
photonic spin hall effective-medium,theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要