Risk assessment and partitioning behavior of PFASs in environmental matrices from an e-waste recycling area.

Hongfei Hu,Xiang Zeng,Keyang Zheng,Zhijun Zeng, Chenxu Dai,Xia Huo

The Science of the total environment(2023)

引用 0|浏览0
暂无评分
摘要
OBJECTIVE:Perfluoroalkyl and polyfluoroalkyl substance (PFAS) contamination and their human exposure risks are a major concern. However, knowledge of PFAS contamination in environments near e-waste recycling sites and their health risk assessment are scarce. METHODS:We measured the concentrations of PFASs in soil (n = 12), water (n = 12) and atmospheric samples (n = 26) by LCP-MS/MS, analyzed the source apportionment of PFASs by PCA, and investigated the child health risk assessment from an e-waste recycling area (Guiyu) and a reference area (Haojiang). RESULTS:We found high concentrations of PFASs in the atmosphere and low concentrations of PFASs in soil. The average concentration of perfluoro-n-heptanoic acid (PFHpA) (9.43 ng/L) was highest among PFASs in water. The concentrations PFASs in the atmosphere and water were higher in the e-waste recycling area than in the reference area (p < 0.05). According to Multi-Linear regression model, we found that daily intake doses for PFASs in air of PFODA [β (95 % CI): -0.217 (-0.332, -0.048), p < 0.05] and PFBS [β (95 % CI): -0.064 (-0.106, -0.006), p < 0.05] were negatively associated with child BMI. PFBA [β (95 % CI: -1.039 (-2.454, -0.010), p < 0.05] was negatively correlated with child head circumference. CONCLUSION:The concentrations of PFASs in the water and atmosphere are higher in the e-waste recycling site than in the reference area. We found that their intake affected growth and development in children. We need to reduce pollution from PFASs in the e-waste recycling area while maintaining a focus on their impact on child health.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要