End-to-end 3D Tracking with Decoupled Queries.

ICCV(2023)

引用 2|浏览162
暂无评分
摘要
In this work, we present an end-to-end framework for camera-based 3D multi-object tracking, called DQTrack. To avoid heuristic design in detection-based trackers, recent query-based approaches deal with identity-agnostic detection and identity-aware tracking in a single embedding. However, it brings inferior performance because of the inherent representation conflict. To address this issue, we decouple the single embedding into separated queries, i.e., object query and track query. Unlike previous detection-based and query-based methods, the decoupled-query paradigm utilizes task-specific queries and still maintains the compact pipeline without complex post-processing. Moreover, the learnable association and temporal update are designed to provide differentiable trajectory association and frame-by-frame query update, respectively. The proposed DQ-Track is demonstrated to achieve consistent gains in various benchmarks, outperforming previous tracking-by-detection and learning-based methods on the nuScenes dataset. 1
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要